Non-Monotonic Aging and Memory Retention in Disordered Mechanical Systems


Lahini Y, Gottesman O, Amir A, Rubinstein S. Non-Monotonic Aging and Memory Retention in Disordered Mechanical Systems. Physical Review Letters [Internet]. 2017;118 :085501.


We observe nonmonotonic aging and memory effects, two hallmarks of glassy dynamics, in two disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression, both systems exhibit monotonic nonexponential relaxation. However, when after a certain waiting time the compression is partially reduced, both systems exhibit a nonmonotonic response: the normal force first increases over many minutes or even hours until reaching a peak value, and only then is relaxation resumed. The peak time scales linearly with the waiting time, indicating that these systems retain long-lasting memory of previous conditions. Our results and the measured scaling relations are in good agreement with a theoretical model recently used to describe observations of monotonic aging in several glassy systems, suggesting that the nonmonotonic behavior may be generic and that athermal systems can show genuine glassy behavior.

Physics Viewpoint

Last updated on 02/22/2017