Slow relaxations and aging in the electron glass.


Amir A, Oreg Y, Imry Y. Slow relaxations and aging in the electron glass. Phys Rev Lett. 2009;103 (12) :126403.

Date Published:

2009 Sep 18


Glassy systems are ubiquitous in nature. They are characterized by slow relaxations to equilibrium without a typical time scale, aging, and memory effects. Understanding this has been a long-standing problem in physics. We study the aging of the electron glass, a system showing remarkable slow relaxations of the conductance. We find that the appropriate broad distribution of relaxation rates leads to a universal relaxation of the form log(1 + t_{w}/t) for the common aging protocol, where t_{w} is the length of time the perturbation driving the system out of equilibrium was on, and t the time of measurement. These results agree well with several experiments performed on different glassy systems, and examining different physical observables, for times ranging from seconds to several hours. The suggested theoretical framework appears to offer a paradigm for aging in a broad class of glassy materials.